Yöntemlerin Karşılaştırılması
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.tree import DecisionTreeClassifier
#Dosyayi Yukle
veri = pd.read_csv('veri/data_base.csv')
ozellik_sayisi = 20
#giris cikis belirle
giris_verileri = veri.iloc[:,1:ozellik_sayisi+1]
cikis = veri.iloc[:,-1]
#Egitim ve test verilerini ayir
egitim_giris, test_giris,egitim_cikis, test_cikis = train_test_split(giris_verileri,cikis, test_size=0.15, random_state=0)
#Standardizasyon
scaler = preprocessing.StandardScaler()
stdGiris = scaler.fit_transform(egitim_giris)
stdTest = scaler.transform(test_giris)
siniflandiricilar=[KNeighborsClassifier(n_neighbors=3), LogisticRegression(random_state=0), GaussianNB(), DecisionTreeClassifier()]
basari=list()
fSkor = list()
for i in range(4):
siniflandiricilar[i].fit(stdGiris, egitim_cikis)
cikis_tahmin = siniflandiricilar[i].predict(stdTest)
basari.append(accuracy_score(test_cikis, cikis_tahmin))
fSkor.append( f1_score(test_cikis, cikis_tahmin, labels=None, pos_label=1, average='binary', sample_weight=None))